Chitosan als Helfer für pCRISPR-Übertragung
CRISPR/Cas ist ein vielversprechendes Werkzeug zur Bekämpfung von genetischen Krankheiten. Allerdings haben nicht virale-Vektoren mit einer guten Transfektionseffizienz oft mit einer hohen Zytotoxizität zu kämpfen. In dem vorgestellten Paper wurden Ca-Nanopartikel mit Chitosan modifiziert. Anschließend wurden die Effekte auf Transfektionseffizienz und Zytotoxizität untersucht.
CHITOSAN-BASIERTE NANOMATERIALIEN UND IHRE WECHSELWIRKUNG MIT CHITOSAN: OPTIMIERUNG FÜR PCRISPR -TRANSPORT
Calcium‑based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery, Rabiee, N.; Bagherzadeh, M.; Ghadir, A.M.; Kiani, M.; Ahmadi, S.; Jajarmi, V.; Fatahi, Y.; Aldhaher, A.; Tahriri, M.; Webster, T.J.; Mostafavi, E., 2021, Journal of Nanostructure in Chemistry, https://doi.org/10.1007/s40097-021-00446-1
CRISPR/Cas gilt als vielversprechendes Werkzeug zur Bekämpfung genetischer Krankheiten. Um CRISPR und das zu übertragende Gens in eine Zelle als Plasmid (pCRISPR) einzubringen, wird ein Träger bzw. Vektor benötigt. Neben viralen Vektoren, die zum einen teuer sind und zum anderen in vivo immunologische Reaktionen auslösen könnten, stellen nicht-virale Vektoren eine Alternative dar. Diese sind oft günstig in der Synthese und Produktion. Außerdem bieten sie viel Spiel für Optimierung um z.B. Anwendungen in der Krankheitsprävention, Diagnose und Behandlung zu ermöglichen. Allerdings wiesen in bisherigen Studien nicht-virale Vektoren einen Zusammenhang zwischen Zytotoxizität und Transfektionseffizienz auf. Bei Vektoren mit einer hohen Transfektionseffizienz wie z.B. das synthestische Polymer PEI (Polyethylenamin), wurde oft eine relativ hohe Zytotoxizität beobachtet. Dagegen wiesen Nanopartikel die Kationen wie z.B. Mg2+, Ca2+, Ba2+ oder Mn2+ enthalten, zwar eine geringe Zytotoxizität auf, allerdings auch eine niedrige Transfektionsrate.
Nanopartikel wie z.B. Calcium Phosphat (CaP) sind in der Lage stabile Komplexe mit dem DNA Rückgrat zu bilden und diese zusätzlich zu stabilisieren. Während der Transfektion können die Nanopartikel-DNA-Komplexe über Ionenkanäle in die Zellen eingeschleust werden. Nach dem Einbringen in die Zelle wird die exogene DNA allerdings schnell abgebaut, weshalb es hier eine geringe Transfektionrate der Zellen beobachtet wird.
Interessante Ergebnisse wurden auch für den Einsatz von natürlichen, kationischen Polysaccaride mit Glucosamin-Untereinheiten, wie z.B. Chitosan, als Vektoren erzielt. Die unacetylierte Form kann stabile Komplexe mit der einzubringenden DNA zu bilden. Ist dabei das Chitosan kleiner als 90 nm, ist es in der Lage DNA zu effektiv zu kondensieren.
Um die Transfektionseffizienz von Calcium-Nanopartikeln, CaP und in Pflanzen hergestellte Calcium-Nanopartikel (CaNPs) zu verbessern, wurden diese in der vorgestellten Studie mit Chitosan modifiziert. Anschließend wurden die Chitosan-Nanopartikel genutzt um pCRISPR mit EGFP gekoppelt in HEK-293 Zellen einzubringen. Neben der Bestimmung der Transfektionseffizienz durch EGFP Fluoreszenz, wurde die Zytotoxizität der Vektoren untersucht.
ERGEBNISSE
- Die mit Chitosan behandelten Nanopartikel wiesen ein höheres Zeta-Potential auf, was zu einer verbesserten Bindung von genetischen Material an die Partikel führte
- Alle Nanopartikel zeigten in Assays eine gute Zellviabilität für HEK-Zellen (mehr als 85 %)
- Transfektionseffizienz verbesserte sich mit steigenden Ratio zwischen Nanopartikel und pCRISPR DNA
- Beste EGFP-Expression von 25 % der HEK-293 Zellen wurde für CaP-Chitosan beobachtet, für CaNPs-CaP-Chitosan mehr als 14 %
- Verbesserung der DNA-Kondensation durch synergetischen Effekt zwischen CaP und Chitosan
- Geringere Aggregation der Nanopartikel bei Chitosananwesenheit führte zu einer kleineren Partikelgröße und somit zu einer verbesserten Transfektion
Zusammenfassung: In der Studie wurde gezeigt, dass mit Chitosan gekoppelte CaP und CaNP-Nanopartikel in der Lage sind humane HEK-293 Zellen mit pCRISPR zu transfizieren. Neben einer Transfektionseffizienz bis zu 25 % für CaP-Chitosan, wurde mit diesen nicht-viralen Vektoren auch gute Zellviabilitäten über 85 % beobachtet. Link zum Artikel: https://link.springer.com/article/10.1007/s40097-021-00446-1