Zum Hauptinhalt springen

News

head uk2

Chitosan als Helfer für pCRISPR-Übertragung

CRISPR/Cas ist ein vielversprechendes Werkzeug zur Bekämpfung von genetischen Krankheiten. Allerdings haben nicht virale-Vektoren mit einer guten Transfektionseffizienz oft mit einer hohen Zytotoxizität zu kämpfen. In dem vorgestellten Paper wurden Ca-Nanopartikel mit Chitosan modifiziert. Anschließend wurden die Effekte auf Transfektionseffizienz und Zytotoxizität untersucht.

CHITOSAN-BASIERTE NANOMATERIALIEN UND IHRE WECHSELWIRKUNG MIT CHITOSAN: OPTIMIERUNG FÜR PCRISPR -TRANSPORT

Calcium‑based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery, Rabiee, N.; Bagherzadeh, M.; Ghadir, A.M.; Kiani, M.; Ahmadi, S.; Jajarmi, V.; Fatahi, Y.; Aldhaher, A.; Tahriri, M.; Webster, T.J.; Mostafavi, E., 2021, Journal of Nanostructure in Chemistry, https://doi.org/10.1007/s40097-021-00446-1

CRISPR/Cas gilt als vielversprechendes Werkzeug zur Bekämpfung genetischer Krankheiten. Um CRISPR und das zu übertragende Gens in eine Zelle als Plasmid (pCRISPR) einzubringen, wird ein Träger bzw. Vektor benötigt. Neben viralen Vektoren, die zum einen teuer sind und zum anderen in vivo immunologische Reaktionen auslösen könnten, stellen nicht-virale Vektoren eine Alternative dar. Diese sind oft günstig in der Synthese und Produktion. Außerdem bieten sie viel Spiel für Optimierung um z.B. Anwendungen in der Krankheitsprävention, Diagnose und Behandlung zu ermöglichen. Allerdings wiesen in bisherigen Studien nicht-virale Vektoren einen Zusammenhang zwischen Zytotoxizität und Transfektionseffizienz auf. Bei Vektoren mit einer hohen Transfektionseffizienz wie z.B. das synthestische Polymer PEI (Polyethylenamin), wurde oft eine relativ hohe Zytotoxizität beobachtet. Dagegen wiesen Nanopartikel die Kationen wie z.B. Mg2+, Ca2+, Ba2+ oder Mn2+ enthalten, zwar eine geringe Zytotoxizität auf, allerdings auch eine niedrige Transfektionsrate.

Nanopartikel wie z.B. Calcium Phosphat (CaP) sind in der Lage stabile Komplexe mit dem DNA Rückgrat zu bilden und diese zusätzlich zu stabilisieren. Während der Transfektion können die Nanopartikel-DNA-Komplexe über Ionenkanäle in die Zellen eingeschleust werden. Nach dem Einbringen in die Zelle wird die exogene DNA allerdings schnell abgebaut, weshalb es hier eine geringe Transfektionrate der Zellen beobachtet wird.

Interessante Ergebnisse wurden auch für den Einsatz von natürlichen, kationischen Polysaccaride mit Glucosamin-Untereinheiten, wie z.B. Chitosan, als Vektoren erzielt. Die unacetylierte Form kann stabile Komplexe mit der einzubringenden DNA zu bilden. Ist dabei das Chitosan kleiner als 90 nm, ist es in der Lage DNA zu effektiv zu kondensieren.

Um die Transfektionseffizienz von Calcium-Nanopartikeln, CaP und in Pflanzen hergestellte Calcium-Nanopartikel (CaNPs) zu verbessern, wurden diese in der vorgestellten Studie mit Chitosan modifiziert. Anschließend wurden die Chitosan-Nanopartikel genutzt um pCRISPR mit EGFP gekoppelt in HEK-293 Zellen einzubringen. Neben der Bestimmung der Transfektionseffizienz durch EGFP Fluoreszenz, wurde die Zytotoxizität der Vektoren untersucht.

ERGEBNISSE

  • Die mit Chitosan behandelten Nanopartikel wiesen ein höheres Zeta-Potential auf, was zu einer verbesserten Bindung von genetischen Material an die Partikel führte
  • Alle Nanopartikel zeigten in Assays eine gute Zellviabilität für HEK-Zellen (mehr als 85 %)
  • Transfektionseffizienz verbesserte sich mit steigenden Ratio zwischen Nanopartikel und pCRISPR DNA
  • Beste EGFP-Expression von 25 % der  HEK-293 Zellen wurde für CaP-Chitosan beobachtet, für CaNPs-CaP-Chitosan mehr als 14 %  
  • Verbesserung der DNA-Kondensation durch synergetischen Effekt zwischen CaP und Chitosan
  • Geringere Aggregation der Nanopartikel bei Chitosananwesenheit führte zu einer kleineren Partikelgröße und somit zu einer verbesserten Transfektion

Zusammenfassung: In der Studie wurde gezeigt, dass mit Chitosan gekoppelte CaP und CaNP-Nanopartikel in der Lage sind humane HEK-293 Zellen mit pCRISPR zu transfizieren. Neben einer Transfektionseffizienz bis zu 25 % für CaP-Chitosan, wurde mit diesen nicht-viralen Vektoren auch gute Zellviabilitäten über 85 % beobachtet. Link zum Artikel: https://link.springer.com/article/10.1007/s40097-021-00446-1

chitosan, Nanopartikel

Kontakt

  • Heppe Medical Chitosan GmbH
    Heinrich-Damerow-Straße 1
    D-06120 Halle (Saale)
  • Tel.: +49 (0) 345 27 996 300
    Fax: +49 (0) 345 27 996 378
  • Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.

News

Technikum Production Specialist – GMP & MedTech (m/w/d)

Sie mögen Routine und stille Bänderarbeit? Dann sind Sie hier falsch.


Sie haben Lust auf vielseitige Technik, ein bisschen Chemie, ein bisschen MedTech, ein bisschen GMP – aber nie Langeweile? Dann sind Sie bei uns goldrichtig.
Die Heppe Medical Chitosan GmbH (HMC) ist ein mittelständisches Chemie-/Pharmaunternehmen – und ja, wir sind Weltmarktführer für Chitosan. Unsere Produkte landen nicht irgendwo, sondern in der internationalen Pharmaindustrie und Medizintechnik. Und weil unsere Chitosane so vielseitig sind wie unser Team, suchen wir Verstärkung im Bereich Produktion – am liebsten jemanden, der nicht nur „bedient“, sondern mitdenkt und anpackt.

Chitosan in Lebensmitteln und Verpackungen – Was wirklich zählt für Funktion und Anwendung

Chitosan ist ein vielseitiges Biopolymer, das in der Lebensmittel- und Verpackungsbranche zunehmend an Bedeutung gewinnt. Als antimikrobiell, biologisch abbaubar und filmbildend bietet es nachhaltige Lösungsansätze für Haltbarkeitsverlängerung und plastikfreie Verpackung. Doch seine Wirksamkeit hängt nicht allein von bekannten Parametern wie Deacetylierungsgrad (DDA) und Molekulargewicht (MW) ab – es ist ein Zusammenspiel mehrerer chemischer und physikalischer Eigenschaften, das über die Anwendbarkeit entscheidet.

 

Chitosan als natürlicher Radioprotektor – Von Grundlagenforschung bis zur modernen Anwendung

Chitosan ist längst nicht mehr nur ein interessantes Biopolymer für die Lebensmittel- oder Wundheilungsbranche. Auch in anderen Bereichen rückt es zunehmend in den Fokus – unter anderem durch seine radikalfangenden, hämatopoetischen und zellschützenden Eigenschaften. Eine der vielversprechendsten Anwendungen: Radioprotektion – also der Schutz von Gewebe vor Schäden durch ionisierende Strahlung.

Mikronadeln gegen resistente Infektionen: Innovative Wundheilung mit Chitosan und Nanozymen

Die Behandlung infizierter Brandwunden – insbesondere, wenn antibiotikaresistente Bakterien im Spiel sind – stellen nach wie vor eine große Herausforderung in der modernen Medizin dar.
Ein Forschungsteam hat nun eine bahnbrechende Lösung vorgestellt: ein hydrogelbasiertes Mikronadel-System, das sogenannte „High-Entropy Nanozyme“ mit Chitosan kombiniert.


Diese neuartige Technologie bekämpft nicht nur resistente Keime, sondern fördert auch aktiv die Wundheilung – mit einem besonderen Fokus auf die Rolle von Chitosan als Schlüsselmaterial.

Chitosan und Koffein – ein innovatives Duo für Gesundheit, Kosmetik und Umwelt

Chitosan, ein vielseitiges Biopolymer aus Chitin, findet längst breite Anwendung in Pharmazie, Medizin, Kosmetik und Umwelttechnologie. Besonders spannend wird es, wenn Chitosan mit einem anderen bekannten Wirkstoff kombiniert wird: nämlich Koffein. Was zunächst wie die Rezeptur für ein energiespendendes Nahrungsergänzungsmittel klingt, ist tatsächlich ein hochinteressantes Forschungsfeld mit vielversprechenden Anwendungen – weit über die Lebensmittelindustrie hinaus.

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.